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Variable order mapped in"nite wave envelope elements are developed for
"nite-element modelling (FEM) of acoustic radiation in a uniformly moving
medium. These elements can be used as a non-re#ecting boundary condition for
computations on an in"nite domain in which a radiating body is immersed in
a moving medium which is essentially undisturbed outside of the near "eld. An
additional result of this study shows that the mapped wave envelope elements
provide a boundary condition equivalent to sti!ness, mass, and damping matrices
appended to the inner mesh. By choosing the transition between the standard FEM
mesh and the mapped in"nite wave envelope as a surface of constant phase the
mass matrix is caused to vanish identically. This has implications for transient
FEM modelling of acoustic radiation. A demonstration of the characteristics of
mapped in"nite wave envelope elements is given in the context of acoustic
radiation from a turbofan inlet for which benchmark results are known.

( 1999 Academic Press.
1. INTRODUCTION

Modelling of acoustic radiation is usually complicated by the requirement that
prediction of the acoustic "eld is required in some "nite subdomain of an in"nite
domain. This requires that computations be limited to the subdomain with
a non-re#ecting boundary or that the in"nite domain be mapped on to a "nite
computational domain. In "nite element modelling this has led to the study of
a number of forms of in"nite elements [1}3], wave envelope elements [4, 5], and
mapped in"nite wave envelope elements [6}9]. The several forms of in"nite
elements in some sense map the in"nite domain to a "nite domain. Wave envelope
elements restrict computations to a large but "nite domain bounded by
a Sommerfeld radiation condition. The non-re#ecting boundary is reached from an
inner standard "nite-element domain via large elements in which the shape functions
are augmented to re#ect decay with distance from the source and the temporal and
spatial character of outgoing waves. The attributes of in"nite elements and wave
envelope elements are combined in mapped in"nite wave envelope elements.
22-460X/99/290665#23 $30.00/0 ( 1999 Academic Press



666 W. EVERSMAN
Mapped in"nite wave envelope elements have been investigated extensively for
acoustic radiation in a stationary medium. They have certain apparent advantages
as compared to standard wave envelope elements. In the case of harmonic
radiation, the most signi"cant advantage is the possibility of adjusting the order of
the elements to "t the requirements of the problem. Formulation of the elements
reveals the possibility of including within the element shape function an explicit
dependence on inverse powers of the distance from the apparent acoustic source,
consistent with theoretical results [8]. This fact allows the introduction of mapped
in"nite wave envelope elements well into what would normally be considered the
acoustic near "eld, reducing mesh re"nement and dimensionality. The shape
functions in mapped in"nite wave envelope elements can accommodate near"eld
e!ects, and this fact can be enhanced by adjusting the order of the interpolation in
the elements to "t the problem requirements. A second advantage in the FEM
formulation using the mapped in"nite wave envelope elements is that the
Sommerfeld radiation boundary is in"nitely far away and is never explicitly
appended as a natural boundary condition. Astley et al. [9] also demonstrated the
applicability of mapped in"nite wave envelope elements to problems in transient
acoustic radiation, a feature which has not been exploited in standard wave
envelope elements. With an appropriate choice of mesh geometry they show that
mapped in"nite wave envelope elements provide a boundary condition which is
well suited for time-marching solutions. The advantages of the mapped in"nite
wave envelope elements are not without cost, and the trade-o! comes in the form of
increased band width of the discretized "eld equations that is introduced by high
order mapped elements. This may o!set e$ciency gains achieved by reduction of
the extent of the computational near "eld and therefore the standard FEM mesh if
bandwidth-sensitive solvers are used.

The study reported here extends the variable order mapped in"nite wave
envelope concept to uniform steady #ows, principally in connection with
aeroacoustic problems related to turbofan acoustic radiation. This is a direct
extension of the development of Astley et al. [8, 9]. They present their formulation
in the context of problems in three dimensions in Cartesian co-ordinates. The
application here is in a cylindrical co-ordinate system reduced to two dimensions
by taking advantage of periodicity of the solution in the angular co-ordinate. The
development of the mapped wave envelope elements is completely general and not
restricted to this co-ordinate system. Harmonic radiation is considered explicitly;
however it is shown here that as in the case of a stationary medium, with a judicious
choice of the mesh geometry, the structure of the mapped elements becomes
favorable for transient calculations.

2. AN APPLICATION TO TURBOFAN INLET ACOUSTICS

An important problem of acoustic radiation in a moving medium is available in
the study of the acoustic "eld of a turbofan inlet. The noise due to turbo-machinery
sources within the inlet is propagated in the inlet and radiated to the (in"nite) far
"eld. Acoustic propagation and radiation occurs in a high-speed potential #ow
which is the net e!ect of #ow into the inlet and the forward #ight of the inlet. In the



Figure 1. Computational domain showing genetic geometry of the nacelle and boundaries and
regions used in the "nite element, wave envelope, and mapped in"nite wave envelope element
formulations.
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steady #ow far "eld (perhaps nearer to the inlet than the acoustic far "eld) acoustic
radiation occurs in a uniformly moving medium. It is required to make
computations to predict the radiated "eld in a "nite subdomain relatively near the
inlet. This has been approached in the past by terminating the computational
domain with a Sommerfeld condition on a boundary reached by the use of wave
envelope elements [5, 10}12]. Here it is intended to investigate the application of
mapped in"nite wave envelope elements to obtain closure of the computational
domain.

For turbofan inlet acoustic radiation the nacelle geometry and the steady #ow
"eld (representing #ow into the inlet and forward #ight) are assumed to be axially
symmetric. The noise source is assumed to be harmonic in time and is decomposed
into its angular modal content, allowing a two-dimensional representation of the
acoustic "eld in a plane through the nacelle axis of symmetry. The solution domain
is shown in Figure 1. It is the x, r plane in cylindrical co-ordinates. The source
plane is designated by C

f
. The source is input on this plane by specifying complex

amplitudes of incident duct modes [5, 10}12]. The nacelle outer surface is C
n
. On

this boundary, steady #ow and acoustic particle velocities have a vanishing normal
component. An arti"cial ba%e C

b
formed by a ray from the origin limits the

solution domain. The sweep angle is chosen in such a way that minimal e!ect on the
acoustic "eld is created [13]. The domain of computation is divided into two parts.
In an inner region a standard "nite-element mesh is used; in the present problem
eight-node serendipity elements with the condition that four to "ve elements per
wavelength are required. The near "eld is terminated on a boundary C

r
beyond

which far"eld elements are used. In previous studies, this region was large but "nite
and bounded by the surface C

=
, a circle which represents a constant-phase surface
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for an acoustic source located at the origin. On this boundary, a radiation
condition was speci"ed. Wave envelope elements [5, 10}12] were used in this
region. In the present study, the far"eld region is extended to in"nity and a single
layer of mapped in"nite wave envelope elements is used to provide a re#ection-free
boundary on C

r
and to compute the acoustic "eld in the far "eld as required. The

boundary C
=

is not part of the solution.

3. FINITE ELEMENT FORMULATION

The geometry of the inlet and steady #ow "eld in and around the inlet is axially
symmetric. The acoustic "eld is not axially symmetric but is represented as periodic
in a cylindrical co-ordinate system with x being the axis of symmetry, r the
cylindrical radius in a circular cross-section at x"0, and h the angular co-ordinate.
Solutions are sought in angular harmonics of a Fourier series enumerated by the
angular mode number m. This reduces the solution domain to a two-dimensional
x, r plane.

The starting point for the formulation of both the steady mean #ow and the
acoustic perturbation consists of the inviscid mass and momentum equations and
the energy equation in the form of the isentropic equation of state. The acoustic
"eld equations are obtained by considering small perturbations on a steady
irrotational mean #ow characterized by density o

r
and speed of sound c

r
. This

formulation makes it possible to introduce a steady #ow velocity potential /
r
and

an acoustic perturbation velocity potential /. Acoustic perturbations in pressure,
density and velocity potential are harmonic in time with frequency g

r
and harmonic

in the angular co-ordinate h of the form p (x, r)e*(grt~mh), o (x, r)e*(grt~mh),
/(x, r)e*(grt~mh). In linearized form, the weak formulation is [5, 10}12]

PP
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The weighting functions are taken as= (x, r, h)"=(x, r)e*mh. Angular harmonics
proportional to e~*mh represent the decomposition of the solution periodic in h in
a Fourier series. The angular mode number m is a parameter of the solution. The
surface integral is over all surfaces bounding the domain. The unit normal for the
surface integral is out of the domain at the surface in question. The weak
formulation continues with the linearized momentum equation
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which is used to replace o in equation (1). The linearized equation of state,

p"c2
r
o , (3)
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is used to produce an alternative form of the momentum equation in terms of
acoustic pressure,

p"!o
r
(ig

r
/#+/

r
)+/). (4)

The acoustic particle velocity and acoustic velocity potential are related according
to

v"+/. (5)

The linearization process also produces the weighted residual formulation for the
steady #ow,
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and the steady #ow momentum equation in terms of the speed of sound,
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and in terms of the steady #ow density,
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Equations (1)}(8) are in non-dimensional form where / is the acoustic potential, /
r

is the local mean #ow (reference) potential, o is the acoustic density, o
r
is the local

mean #ow density, p is the acoustic pressure, and c
r
is the local speed of sound in the

mean #ow. All quantities are made non-dimensional by using the density in the far
"eld, o

=
, the speed of sound in the far "eld, c

=
, and a reference length which is

de"ned as the duct radius at the source plane, R, where acoustic modal amplitudes
are de"ned. This plane could be the fan plane or the exit guide vane plane, but it is
not restricted to these locations. The acoustic potential is non-dimensional with
respect to c

=
R, and the acoustic pressure with respect to o

=
c2
=

. Lengths are made
non-dimensional with respect to R. Time is scaled with R/c

=
, leading to the

de"nition of non-dimensional frequency g
r
"uR/c

=
; u is the dimensional source

frequency. M
=
"M

o
is the Mach number in the far "eld representing the forward

#ight e!ect.
Equation (6) is the weighted residual formulation for the calculation of the

compressible potential #ow within and around the nacelle. Equations (7) and (8)
are subsidiary relations that can be used in an iterative solution which at each stage
uses a density "eld derived from the previous iteration step. +/

r
, c

r
, o

r
are required

data for the weighted residual formulation of the acoustic problem. In the results
reported here only the "rst iteration of this process is used to de"ne the potential
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#ow "eld. This is accomplished by solving the incompressible problem and then
computing a variation in steady #ow density and speed of sound.

The surface integral in equation (1) provides the boundary conditions on the duct
walls, and at the source. The acoustic source is speci"ed by the complex amplitudes
of acoustic duct modes at the source plane. On this plane, the FEM nodal value of
acoustic potential are replaced by the complex amplitudes of the acoustic potential
modes by an eigenfunction expansion. The incident acoustic modal amplitudes are
input and the re#ected modal amplitudes are computed as part of the solution.
Details of this procedure are available in [5, 10}12].

A previous study [13] shows that the ba%e can be positioned to produce
practically no e!ect on typical acoustic radiation patterns. Therefore, there is no
contribution from the surface integral on the ba%e. In previous studies, the surface
integral provided the mechanism for enforcing the Sommerfeld radiation condition
on C

=
. In the present application of mapped wave envelope elements the surface

integral is never explicitly introduced on a far-"eld boundary because the assumed
form of the solution in the outer region implicitly satis"es the Sommer"eld
condition.

In terms of acoustic potential the weak formulation is, from equations (1) and (2),
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where the local non-dimensional steady #ow velocity is M
r
"+/

r
. Equation (9) is

the weak formulation in the entire domain, however in the steady #ow far "eld it
simpli"es considerably with the steady #ow given by M

r
"M

0
i and o

r
"1, c

r
"1.

Furthermore, the surface integral on C
=

has no contribution in the formulation
proposed here because there is no longer any surface on which a Sommerfeld
radiation condition is to be applied. The weak formulation in the steady #ow far
"eld is
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In the cylindrical co-ordinate system used here, some liberty is taken in de"ning
the gradient operations as
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and suppressing factors e$*mh which arise as part of the weighting and trial
functions as explained in connection with equation (1). These factors cancel
throughout all of the products in equations (9) and (10). Equations (11) and (12)
re#ect the harmonic angular dependence of / and =. The non-dimensional
velocity M

0
in equation (10) is the Mach number of the forward #ight.

In the steady #ow near "eld, where the #ow is non-uniform, equation (9) is
discretized using standard "nite-element techniques. Example calculations
presented in this study are based on two-dimensional rectangular isoparametric
serendipity elements with eight nodes.

In the steady #ow far "eld where the #ow is essentially uniform, equation (10) can
be discretized using wave envelope elements or by introducing mapped in"nite
wave envelope elements to obtain closure of the computational domain. It is the
formulation in terms of mapped wave envelope elements which is of interest here.

4. THE INFINITE MAPPING

Because of the harmonic dependence on the angle h the originally
three-dimensional weak formulation reduces to two spatial co-ordinates x and r.
The x, r plane is shown in Figure 1 where the boundary C

r
separates an interior

region in which standard FEM descretization is used from an outer region in which
mapped wave envelope elements are used. The exterior region must be in the steady
#ow far "eld. Figure 2 shows an element in the outer region in the x}r plane of the
cylindrical co-ordinate system. The element is bounded by the surface C on which
r

Figure 2. Details of the "nite/in"nite-element interface.



Figure 3. Geometric details of the mapping between the in"nite element and the parent element: (a)
parent element, (b) mapped wave envelope (WE) element.
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it conform with an element of the conventional mesh. The edges of the element are
straight lines, extending outward more or less radially, though not necessarily from
the axis system origin nor necessarily from a common origin. For the elements used
in this investigation which conform with eight-node serendipity elements in the
conventional mesh (each with three nodes on C

r
) , a third radial line between the

two edges is required. For simplicity, each of the three straight lines will be referred
to as rays. In Figure 1, the outer surface C

=
is the notional outer boundary of the

element at in"nity. A ray of an element has an apparent origin at a point x
0
, r

0
which in general can be di!erent for each ray. The element maps to a parent
element in the m, g plane, !1)m)1, !1)g)1, as shown in Figure 3. The rays
of the element map to the m axis with g"!1, 0, 1 in the parent element according
to

x"
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1!m

x
1
#

1#m
1!m

x
2
, r"

!2m
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r
1
#

1#m
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r
2
, (13, 14)

Since
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#

1#m
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"1, (15)

the mapping is unchanged by an origin shift. Therefore, it can also be used to yield
a mapping relative to the source at x

0
, r

0
:
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0
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The node x
1
, r

1
is de"ned by the requirement that the element conform with the

conventional element on the boundary C
r
. A particularly useful form of the

mapping is obtained if the node at x
2
, r

2
is located such that x

2
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0
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1
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0
)

and r
2
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0
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0
). This makes the mapping simplify to
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The mapping has the properties that m"!1 maps to x!x
0
"x

1
!x

0
,

r!r
0
"r

1
!r

0
, m"0 maps to x!x

0
"2(x

1
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0
) , r!r

0
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1
!r

0
), and

m"1 maps to x!x
0
"R, r!r

0
"R. The mapping along a &&ray'' transforms the

in"nite domain in the physical co-ordinates to the domain !1)m)1 in the
parent element. The inverse mapping is
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It is easily deduced that this mapping along a &&ray'' also applies for the polar
radius of the point x, r relative to x

0
, r

0
, r

p
"J(x!x

0
)2#(r!r

0
)2 , in the

form

r
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and

m"1!2r
p1

/r
p
. (21)

This form emphasizes the role of the base node x
0
, r

0
as a &&source'' for the &&ray'' and

the distance r
p

as the polar distance from the source.
The in"nite-element mapping is completed by a conventional mapping on

!1)g)1. The element shown in Figure 3 has six nodes numbered as shown.
Nodes 1}4 are corner nodes and nodes 5 and 6 are mid-side nodes on C

r
and C

2
(the locus of the nodes x

2
, r

2
). The mapping is of the form

x"[M(m, g)]x, r"[M(m, g)]r , (22)

where [M(m, g)] is a row vector of six shape functions M
i
(m, g) and x, r are vectors of

nodal values of x, r. With the nodal numbering scheme used in Figure 3 the explicit
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form of the shape function is

M
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The mapping described here is simply another view of the results presented by
Astley et al. [8] specialized to the cylindrical co-ordinate system.

In preparation for development of a mapped in"nite wave envelope element for
a uniformly #owing medium it can also be noted that the results of
equations (16)}(21) can be extended to other &&distances'' along a ray yielding
a similar mapping. For example
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0
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0
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1!m
, (24)

where R
1
"J(x

1
!x

0
)2#b2(r

1
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0
)2 and b2"1!M2 and M is the Mach

number of the uniformly #owing medium. A second useful mapping is
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1
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where t
1
"(1/b2)[!M (x

1
!x

0
)#R

1
]. These observations are important to the

extension of the application of the mapped in"nite wave envelope element to
acoustic radiation in uniform steady #ow.

5. SOURCE SOLUTION IN UNIFORM FLOW

The weak formulation of equation (10) for acoustic radiation in a uniformly
moving medium is consistent with the di!erential equation

A
L
Lt
#M

L
LxB

2
/"+2/ . (26)

A fundamental harmonic source solution for this equation is

/"e*gr t
e(~*gr@b2)(~Mx`Jx2`b2r2)

Jx2#b2r2
, (27)
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where b"J1!M2 and r2"y2#z2 . This can be veri"ed by direct substitution
or by noting that the transformation of variables

x@"
x
b
, r@"r, t@"

M
b

x#bt (28)

reduces the convected wave equation (26) to the standard wave equation

L2//Lt@2"+@2/ (29)

in the transformed variables which has a fundamental harmonic source solution

/"e*grb t{
e~*

gr
bJx{2`r{2

Jx@2#r@2
. (30)

Equation (27) is then obtained replacing the change of variables of equation (28). In
terms of the de"nitions of equations (24) and (25), the fundamental harmonic
source solution for source location at x

0
, r

0
is

/"e*grt
e~*grt

R
. (31)

6. SHAPE FUNCTIONS IN THE INFINITE ELEMENTS

Shape function in the mapped in"nite wave envelope elements can be
constructed to display the characteristics of the fundamental source solution at
large distances from the source in the form

/"Q(x)e~*mh R
1

e~*gr(t (x)~t1)

R(x)
"P (x)e~*mh e~*k(x) , (32)

where the notation x"(x, r) and k(x)"g
r
(t (x)!t

1
) is used and is similar to the

notation used by Astley et al. [8]. k(x) is the phase relative to the surface C
r

separating the in"nite-element region from the region of standard FEM
interpolation and t

1
emphasizes that this phase is dependent on the speci"c &&ray''

on which equation (32) is evaluated. t
1

would be a constant for the entire
in"nite-element region if C

r
is a surface of constant t (a &&constant-phase surface''),

but in general would vary from node to node on C
r
. The most direct way to make

t
1

invariant for the mesh is to construct the mesh so that for all in"nite elements
x
0
, r

0
(the &&source point'') is common and C

r
is a surface of constant t ( &&phase'')

relative to the common &&source''. The mesh used by Eversman et al. [5, 10}12] has
this property (x

0
, r

0
are at the mesh origin) and is used in examples in this

investigation. At large R, equation (32) should have asymptotic behavior in
R consistent with equation (31). The function P(x) should therefore display the



Figure 4. Example of an in"nite element with nine]interpolation nodes and six f mapping nodes.
This element produces an asymptotic interpolation in the far "eld of third order in R

1
/R.
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appropriate asymptotic behavior in R, should be capable of accounting for
near"eld e!ects, and should interpolate in the standard FEM context in the
g co-ordinate in the parent element.

In terms of m, g co-ordinates of the parent element, k (x) and R(x)/R
1
, have simple

forms suggested by equations (24) and (25);

k(m, g)"t
1

1#m
1!m

,
R

1
R(m, g)

"

1
2
(1!m). (34, 35)

In equation (34), t
1

can be a function of g on the inner boundary of the element
m"!1, interpolated relative to nodal values on C

r
. The function Q (x) in

equation (32) which accounts for near"eld behavior in the in"nite element can be
represented by a standard FEM interpolation

Q(m, g)"[S(m, g)]Q
M
, (36)

where Q
1

is a vector of nodal values of Q(x). There are six nodes involved in the
in"nite mapping and these can be used as nodes in the interpolation of Q(x). It will
generally be appropriate to use more than the mapping nodes by including extra
nodes along the rays as shown in Figure 4 which demonstrates the introduction of
one extra node midway between the mapping nodes on each ray and suggests
a convenient nodal numbering scheme.

The shape functions for the element shown in Figure 4 with the additional node
midway between the mapping nodes on a given ray are based on nine-node
Lagrangian interpolation with the extra nodes mapped to m"!1

3
. In general, P(x)
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is interpolated within an element according to

P(m, g)"[N(m, g)]Q
M
, (37)

where the shape function N
i
(m, g), the shape function corresponding to node i, is

constructed from the mth-order Lagrangian shape function for node i, ¸p
i
(m, g),

according to

P
i
(m, g)"N

i
(m, g)"1

2
(1!m)¸p

i
(m, g) . (38)

Some liberty is taken with notation here; ¸p
i
(m, g) is de"ned so that p is the order

of interpolation (number of nodes) along the m-axis. Along the g-axis the order
conforms with the order used in the standard FEM region, which is 3 in the
two-dimensional serendipity elements implemented in the model reported here. It is
interesting to note that N

i
(m, g) is unity only for nodes with m"!1 (the Lagran-

gian interpolation functions have the value unity for all nodes). The vector of nodal
values Q

M
corresponding to the evaluation of Q(x) only corresponds to nodal value

of P(x) for nodes on the surface C
r
. Because of this, and because of the phase term

e~*k(x) in equation (32), which is unity only on the surface C
r
, in the in"nite elements

the solution vector does not correspond to nodal values of acoustic potential at
most of the nodes. The potential can be easily reconstructed by postprocessing.

The form of the shape functions de"ned by equation (38) can be interpreted in
global co-ordinate by using equation (24) to show that

1!m"2(R
1
/R), m"1!2(R

1
/R). (39)

Equations (38) and (39) suggest that the shape functions in global co-ordinates
along a ray are of the form

P
i
(x, r)"c

1
(R

1
/R)#c

2
(R

1
/R)2#c

3
(R

1
/R)3#2#c

n
(R

1
/R)n , (40)

n is determined from the order of Lagrangian interpolation. For a p node
interpolation leading to polynomials in m of degree p!1 it is determined that n"p.
A similar result was shown in the case of radiation in a stationary medium [8].

Reference to &&variable order'' mapped in"nite wave envelope elements relates to
the choice of the order of the Lagrangian interpolation and therefore to the powers
of R

1
/R in the asymptotic expansion for the shape function. Conceptually this

could be extended to any order, but as pointed out by Astley et al. [8] there is
a limit imposed by the onset of numerical problems probably related to ill
conditioning if the order is too high.

7. WEIGHT FUNCTIONS IN THE INFINITE ELEMENTS

Astley et al. [8] show that in order for the boundary integral introduced in the
weak formulation to have no contribution on the boundary at in"nity it is
necessary for the weighting functions to be functions of MR /R(x)Nq`1, with q'1.
i
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The weight functions are of the form

/"Q (x)e*mhA
R

1
R(x)B

q`1
e*gr(t(x)~t1)"D(x)P(x)e*mh e*k(x) (41)

where

D (x)"(R
i
/R(x))q (42)

In the parent element,

D (m, g)"(1/2)q (1!m)q (43)

The weight functions are the complex conjugates of the shape functions multi-
plied by the additional decay term. In the present investigation q"3. The notation
here has been chosen to correspond to that used by Astley et al. [8] to emphasize
the similarity with their development in the case of a stationary medium. Only the
details hidden in the de"nitions of t and R are di!erent.

8. THE WEAK FORMULATION IN THE INFINITE-ELEMENT REGION

The weak formulation of equation (10) for the in"nite-element region in which
the steady #ow is necessarily uniform is obtained by using equations (32) and (43)
de"ning the assumed form of solution and the weight functions in the in"nite-
element region. The gradient operations on the assumed shape and weighting
functions yield

+/"(+P!ig
r
P+k)e~*grk (44)

and

+="(D+P*#ig
r
DP+k#P+D)e*grk , (45)

where the notation

+P"

LP
Lx

i#
LP
Lr

e
r
!

im
r

Peh , +P*"
LP
Lx

i#
LP
Lr

e
r
#

im
r

Peh (46, 47)

is used as in equations (11) and (121) because of the factors e$*mh which are
suppressed. By using standard "nite-element operations, equation (11) can be
formulated at the global level to yield complex element &&sti!ness'' matrices [KI

ij
]

de"ned in terms of real mass, sti!ness and damping matrices,

[KI
ij
]"!g2

r
[M

ij
]#ig

r
[C

ij
]#[K

ij
], (48)
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where

K
ij
"P P

V
P GDC(1!M2)

LP
i

Lx
LP

j
Lx

#

LP
i

Lr
LP

j
Lr

#

m2

r2
P
i
P
jD

#P
iC(1!M2)

LD
Lx

LP
j

Lx
#

LD
Lr

LP
j

Lr DH d<, (49)

M
ij
"P P

V
P DP

i
P
jG1!C(1!M2)A

Lk
LxB

2
#A

Lk
Lr B

2
#2M

Lk
LxDH d< (50)

C
ij
"P P

V
PGDP

iC(1!M2)
Lk
Lx

LP
j

Lx
#M

LP
i

Lx
#

Lk
Lr

LP
j

Lr D

!DC(1!M2)
Lk
Lx

LP
i

Lx
#M

LP
j

Lx
#

Lk
Lr

LP
i

Lr DP
j

!C(1!M2)
LD
Lx

Lk
Lx

#M
LD
Lx

#

LD
Lr

Lk
LrDP

i
P
jH d< . (51)

The de"nitions of the sti!ness, mass, and damping matrices of
equations (49)}(51) are implemented at the element level using the in"nite mapping
to the parent element. These results reduce to those of Astley et al. [8] when the
medium is stationary and when account is taken of the operations which are
particular to the cylindrical co-ordinate system. It is not di$cult to generalize to
a three-dimensional Cartesian co-ordinate system.

9. AN IMPORTANT PROPERTY OF THE MASS MATRIX

The mass matrix of equation (50) vanishes if the surface C
r

separating the
standard "nite-element region from the in"nite-element region is a surface of
constant phase for an apparent acoustic source location x

0
, r

0
which is common for

all elements. This is shown by referring to the de"nition of k (x),

k (x)"g
r
(t (x)!t

1
) , (52)

where

t(x)"(1/b2)[!M(x!x
0
)#R], R"J(x!x

0
)2#b2 (r!r

0
)2 . (53, 54)

Since it is stipulated that C
r

is a constant phase surface, it follows that t
1

is
constant. The apparent source location is the same for all elements, leading to the
conclusion that x

0
, r

0
are constants. It can then be veri"ed that

(1!M2) (Lk/Lx)2#(Lk/Lr)2#2M(Lk/Lx)"1 (55)
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which from equation (50) leads to the result

M
ij
"0. (56)

This is consistent with the "ndings of Astley et al. [8] in the case of a stationary
medium when the surface C

r
is a sphere, a constant-phase surface in this case. While

of some interest in the time harmonic formulation considered here, the vanishing of
the mass matrix is of central importance when a time-dependent formulation is
implemented in the stationary medium case. It remains to be established that this is
equally important in the case of a uniformly moving medium.

10. TURBOFAN INLET EXAMPLE

Figure 1 shows the generic geometry of a turbofan inlet in an x, r plane of
a cylindrical co-ordinate system. The nacelle interior and exterior shape are typical
of realistic nacelles. The acoustic source is on the plane C

f
and produces a combi-

nation of radial modes at a speci"ed angular mode m and non-dimensional
frequency g

r
. The source strength is speci"ed by the complex mode amplitudes.

This type of source would correspond to rotor alone noise or rotor/exit guide vane
interaction noise. The frequency is determined by the number of blades on the rotor
and the angular mode number by the rotor and exit guide vane blade counts. The
nacelle has a forward velocity speci"ed by the Mach number M

0
, which is

represented for the stationary nacelle by a steady #ow directed toward the nacelle.
The steady #ow into the nacelle is speci"ed by the Mach number M

i
, taken to be

uniform on the source plane. The steady #ow "eld inside and outside the nacelle,
computed on the FEM acoustic mesh, provides input data for the FEM acoustic
calculations. This mesh is over re"ned for the steady #ow calculations but this
ine$ciency is more than o!set by the convenience of input data on a mesh
compatible with the acoustic mesh.

The details of the FEM acoustic computations with the domain closed by
a conventional wave envelope transition region to a Sommerfeld radiation bound-
ary are given in references [5, 10}12]. In this example the propagation and
radiation problem is formulated with the standard FEM treatment in the steady
#ow near "eld and the domain is closed in the far "eld by the use of mapped in"nite
wave envelope elements. The speci"c case shown is at a reduced frequency g

r
"25

and angular mode m"23 with only the "rst radial mode incident. Only one radial
mode propagates and it has a cuto! ratio near unity, which indicates that the
peak lobe of the radiation pattern will be at a high angle relative to the nacelle axis.
In this case it is over 603 to the nacelle axis for the case of M

i
"0)20 and M

0
"0)30.

Figure 5 shows the standard mesh in the region which has been abritrarily declared
as the steady #ow near "eld. The steady #ow far "eld is where the #ow is essentially
the M

0
"0)3 uniform #ow. The outer boundary of this mesh is the surface C

r
and it

is a circle of constant phase for a source at the axis system origin. The in"nite-
element region is outside of C

r
and not shown. The same inner mesh was used

with the outer region consisting of seven layers of standard wave envelope
elements extending to 10 duct radii ahead of the inlet for the purpose of producing



Figure 5. The near"eld mesh of standard "nite elements bounded by the surface C
r
.

Figure 6. Standard wave envelope mesh used in "nite element/wave envelope element formulation.
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comparison results. The outer mesh for this case is shown in Figure 6. The standard
code has been extensively benchmarked by experiment [12] and by comparison
with available approximate analytical results. Numerical experiments have
shown that for this frequency radiated "elds are particularly di$cult to model.



Figure 7. Contours of equal acoustic potential in the entire computational domain for the "nite-
element/wave envelope element formulation. External mach number M

0
"0)3, source plane Mach

number M
i
"0)2, non-dimensional frequency g

r
"25, angular mode number m"23, "rst radial

mode.
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At high angles to the axis the source is certainly not seen as a simple source on C
r
as

located in this example. It is reasonable to expect that non-re#ecting boundary
behavior based on an asymptotic approximation representing a simple source
would be di$cult to achieve.

The results which will be displayed are contours of constant acoustic potential
magnitude in an x, r plane superposed on the nacelle geometry. Acoustic potential
has been chosen since there is an extra post-processing step to obtain acoustic
pressure which introduces its own potential for error, unrelated to the details of the
re#ection free boundary. Post-processing for pressure in the standard FEM region
involve the same operations whether standard wave envelope or mapped in"nite
wave envelope elements are used in the outer solution. Figure 7 shows the radiation
pattern generated by using the standard code (wave envelope elements) and
plotting contours of constant acoustic potential in the entire computational do-
main. Figure 8 shows the same results limited to the region of standard "nite
elements, which provides a more detailed way of viewing the re#ection free perfor-
mance of the boundary C

r
. Figure 9 shows the results when mapped in"nite wave

envelope elements are used to provide a re#ection free boundary. In the case shown
the formulation is based on eight-node Lagrangian interpolation in the mapped
elements in the m direction (eight nodes). This corresponds to introducing R

1
/R in

the expansion for asymptotic behavior of the far"eld solution up to the eighth
power [refer to equation (40)]. Element integration is based on 9]3 Gauss points.
It was found that "ve-node Lagrangian interpolation (powers of R

1
/R up to "ve in

the asymptotic expansion) was not su$cient.



Figure 8. Contours of equal acoustic potential in the standard "nite-element region for the
"nite-element/wave envelope element formulation. External mach number M

0
"0)3, source plane

Mach number M
i
"0)2, non-dimensional frequency g

r
"25, angular mode number m"23, "rst

radial mode.
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Figure 7 displaying the entire solution "eld to the Sommerfeld boundary (10
duct radii of the nacelle axis) suggests signi"cant re#ection from the boundary
which appears in the waviness of the contours, particularly at higher angles where
di!raction around the inlet lip is important and where the nacelle surface interferes
with the radiation. The quality of the solution does not improve with the further
mesh re"nement, indicating that the mesh is suitable for the frequency. Figure 8
zooms in on the region inside C

r
and the poor quality of the solution is apparent. In

Figure 9 the same level contours are considerably less ragged, indicating that
re#ection has been essentially eliminated. It is of interest to recall that the computa-
tional domain includes the arti"cial ba%e C

b
and it appears that it has little e!ect

on the radiated "eld, consistent with the results reported in reference [13].
The clear conclusion is that poor quality of the solution when standard wave

envelope elements are used is due to the inability of the wave envelope elements to
provide a completely re#ection-free boundary for the complicated source con"g-
uration and this location of C

r
. In principle expanding C

r
should improve the wave

envelope element performance, but this has the obvious implication of directly
increasing the dimensionality (presuming it is required that the mesh re"nement is
retained) and the hidden implication of requiring even further mesh re"nement due
to the growth in element aspect ratio as C

r
is expanded.

Variable order mapped in"nite wave envelope elements generally will increase
the maximum bandwidth of the mesh (the inner mesh may have eight nodes per



Figure 9. Contours of equal acoustic potential in the standard "nite-element region for the
"nite-element/mapped in"nite wave envelope element formulation. External mach number M

0
"0)3,

source plane Mach number M
i
"0)2, non-dimensional frequency g

r
"25, angular mode number

m"23, "rst radial mode. The order of the interpolation in the in"nite elements is eighth power in
R

i
/R.
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element and the single in"nite element layer has been tested here with as many as 24
nodes per element). In frontal solvers, this tends to slow down the solution even if
the total number of nodes is more or less the same in the mapped elements as in the
standard wave envelope elements. In the example discussed, a frontal solver is used
and the mapped in"nite-element computation have an execution time which is in
a ratio of about 7/5 compared to the standard wave envelope code. This cost is not
unimportant, but must be assessed against the requirements for solution quality. In
this case, the in"nite-element results are clearly superior.

The question now arises; how much can the computational domain be reduced
by using the in"nite elements to enhance the re#ection-free boundary? To partly
address the question, the boundary C

r
has been reduced to a radius of two duct

radii ahead of the origin. Note in the original mesh of Figure 5 the mesh extends 2)5
duct radii ahead of the origin. In order to maintain approximately the same
mesh re"nement, the element count between the &&highlight circle'' (a circle
passing through the tip of the inlet lip and intersecting the axis near r"1) has
been reduced from 50 to 35. Figure 10 shows acoustic potential level curves in
the standard element region for the case using mapped wave envelope elements
for closure. The quality of the solution is still substantially superior to that seen in
Figure 8 for which closure was achieved using regular wave envelope elements
(note that the level curves are not the same in Figures 8 and 10 because they are
based on the maximum level on C

r
, which di!ers because C

r
di!ers). The



Figure 10. Contours of equal acoustic potential in the standard "nite-element region for the
"nite-element/mapped in"nite wave envelope element formulation on a reduced mesh in the standard
element region. External mach number M

0
"0)3, source plane Mach number M

i
"0)2, non-dimen-

sional frequency g
r
"25, angular mode number m"23, "rst radial mode. The order of the interpola-

tion in the in"nite elements is eighth power in R
i
/R.
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computation time ratio is now nearly 1/1 and the mapped in"nite-element results
are still superior.

11. CONCLUSION

It has been shown that with suitable modi"cations mapped in"nite wave envel-
ope elements can be used to provide an e!ective re#ection-free boundary for
acoustic radiation in a uniform steady #ow. The adaptation of the elements to this
case is based on the observation that all important &&distances'' along &&rays''map to
the parent element in the in"nite mapping in exactly the same way. This permits the
fundamental solution for radiation from a source in uniform #ow to be mapped to
the parent element in a form similar to the mapping in the case of a stationary
medium. The fundamental solution forms the basis for an asymptotic expansion in
R~n in the in"nite elements, where R is the &&convected radius'', R2"x2#b2r2.
The order of the asymptotic expansion can be chosen to meet the needs of the
problem. Element mapping functions are identical to those previously proposed for
the stationary medium case and the shape functions are of the same form as those in
the stationary medium case with di!erences only in the details.

Computational examples have been based on acoustic radiation from a turbofan
inlet which has been the subject of several previous investigations in which an FEM
model was developed with the re#ection-free closure of the computational domain
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based on standard wave envelope elements. Examples have shown that mapped
in"nite wave envelope elements provide a superior re#ection-free boundary for
cases in which the standard wave envelope elements generate re#ections which
appear in the radiated "eld. It should be noted that the improved performance may
not be without cost. If relatively high order mapped elements (asymptotic behavior
to R~n where n is relatively large) are required, the maximum front width of the
FEM formulation may be larger than would occur in the standard wave envelope
element formulation. For frontal solvers this may decrease computational e$cien-
cy. However, this cost has a substantial bene"t in the quality of the solution which
may not be achievable with the standard wave envelope elemnts without expanding
the boundary between standard FEM and the wave envelope element region. In
fact, it has been shown that by taking advantage of the reduction in size of the inner
region (standard element region) which is achievable with mapped in"nite elements
it is possible to obtain superior solutions without increasing computation time.

It has been found that the mapped in"nite wave envelope element region can be
cast in the form of appended mass, damping and sti!ness matrices. With a suitable
choice of the surface which separates the standard FEM region from the in"nite-
element region and the restriction that the mapping and shape functions in the
in"nite elements are based on a common apparent source location, it has been
shown that the element mass matrices vanishe. This has previously been shown to
be important for transient FEM formulations for radiation in a stationary medium.
This suggests that similar investigations should be carried out in the case of
uniform external #ow.
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